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Abstract. Background: Active noise cancellation has been a subject
of research for decades. Traditional techniques, like the Fast Fourier
Transform, have limitations in certain scenarios. This research explores
the use of deep neural networks (DNNs) as a superior alternative.
Objective: The study aims to determine the effect sampling rate within
training data has on lightweight, efficient DNNs that operate within the
processing constraints of mobile devices.
Methods: We chose the ConvTasNET network for its proven efficiency
in speech separation and enhancement. ConvTasNET was trained on
datasets such as WHAM!, LibriMix, and the MS-2023 DNS Challenge.
The datasets were sampled at rates of 8kHz, 16kHz, and 48kHz to analyze
the effect of sampling rate on noise cancellation efficiency and effectiveness.
The model was tested on a core-i7 Intel processor from 2023, assessing the
network’s ability to produce clear audio while filtering out background
noise.
Results: Models trained at higher sampling rates (48kHz) provided much
better evaluation metrics against Total Harmonic Distortion (THD) and
Quality Prediction For Generative Neural Speech Codecs (WARP-Q)
values, indicating improved audio quality. However, a trade-off was noted
with the processing time being longer for higher sampling rates.
Conclusions: The Conv-TasNET network, trained on datasets sampled
at higher rates like 48kHz, offers a robust solution for mobile devices in
achieving noise cancellation through speech separation and enhancement.
Future work involves optimizing the model’s efficiency further and testing
on mobile devices.

1 Introduction

The advent of mobile communication has revolutionized how we interact, but
it has also introduced new challenges, particularly in managing noise in various
environments. The surge in mobile device usage in noise-pervasive settings like
busy streets or cafes necessitates advanced audio processing solutions to ensure
clear and effective communication. We conduct a comparative study on the effects
of sampling rates within audio datasets training data for the effectiveness and
efficiency of a proven DNN architecture compatible with edge devices. This effort
aims to bring robust noise reduction capabilities to common communication tools,
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thereby improving user experience in noisy environments without excessive com-
putational demands. The field of deep learning-based active noise control (ANC)
has seen significant progress, particularly in audio processing for communication
systems, biomedical applications, and industrial environments. Key technologies
like NVIDIA RTX Voice, Krisp AI have set the industry standard for noise
cancellation, although their specific methodologies remain proprietary. Other
computer-based applications such utterly, clear by Supertone and magicmic and
various other computer-based applications are all also available for the problem
we set out to solve but, all of these applications require a substantial amount
of computational cost and as such are only supported on desktops and are not
designed for use on edge devices such as mobile phones. Similar de-noise applica-
tions have been developed for use on mobile technology, such as Denoise, Audio
Noise Reducer, ByeNoise and many others available right now on the IOS and
Android app store. However, Due to the complexity of the de-noise algorithms
used by these applications, none of the de-noise applications presently available
are able to conduct real-time noise cancellation. Hence, we aim to fill this gap
in the present literature and explore systems capable of producing de-noised
audio in real-time at high quality on edge devices such as a mobile phone. The
development of ANC technologies, particularly through algorithms like Filtered-x
Least Mean Square (FxLMS), has significantly enhanced electroacoustic systems
by addressing challenges such as acoustic feedback and secondary route estimation
[1]. These advancements extend to Nonlinear ANC (NLANC), employing methods
based on the Volterra series, Hammerstein models, and Functional Link Artificial
Neural Networks (FLANN), which show promise in managing the complexities
inherent to nonlinear environments [2]. Additionally, heuristic algorithms like
genetic and particle swarm optimizations have been introduced to tackle these
nonlinear challenges [2].In practical applications, Microsoft Teams incorporates
AI-driven ANC to improve audio clarity in video calls, likely utilizing neural
networks like CNNs and RNNs to filter speech from background noise [3]. In
the biomedical field, innovative real-time noise cancellation techniques use deep
learning to minimize EMG interference in EEG signals, suggesting applications
in both consumer electronics and industrial monitoring [4]. Advances in vocoder
technology through deep learning, such as the integration of WaveNet-inspired
CNNs and DSP techniques, enhance audio quality and enable effective speech
synthesis, showing significant improvements in systems like the NVSR model and
the "Vogen Voc" [5, 6, 7]. VocBench and LightVoc represent the latest in vocoder
testing and neural coding, respectively, highlighting rapid progress in speech
synthesis and audio processing [8, 9]. Deep learning continues to outperform
traditional methods in ANC across various environments, from personal devices
to challenging industrial settings, proving its efficacy and adaptability [10, 11,
12, 13, 14, 15].

https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
https://krisp.ai/
https://www.utterly.app/
https://product.supertone.ai/clear
https://magicmic.ai/
https://apps.apple.com/us/app/denoise-audio-noise-removal/id946423200
https://apps.apple.com/us/app/audio-noise-reducer-recorder/id1451686645
https://apps.apple.com/us/app/audio-noise-reducer-recorder/id1451686645
https://apps.apple.com/us/app/byenoise-video-audio-editor/id1560151837
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2 Related Work

2.1 Audio Source Separation

Deep learning techniques have been a major driving force behind recent advances
in audio source separation, which have resulted in notable developments in this
field. [16] presented the Wave-U-Net architecture, a novel method for separating
audio sources that overcome the constraints associated with phase information
and fixed spectrum transformations present in conventional spectrogram-based
techniques by converting the U-Net model to a one-dimensional format and con-
centrating on time-domain processing. The Wave-U-Net model offers a potential
direction for high-quality separation in a variety of audio settings by handling
long-range temporal dependencies efficiently. [17] presented a Multi-Scale Multi-
Band DenseNet (MMDenseNet) to address large input and output dimensions
and extend the DenseNet architecture to support lengthy context modelling. The
success of MMDenseNet in the Signal Separation Evaluation Campaign (SiSEC)
2016 is especially indicative of the improved separation performance made pos-
sible by their unique multi-band methodology, in which each frequency band
is simulated independently. The SUccessive DOwnsampling and Resampling of
Multi-Resolution Features (SuDoRM-RF) network is a novel design for universal
audio source separation, created by [18]. SuDoRM-efficient RF’s architecture con-
siderably reduces processing demands by combining one-dimensional convolutions
with downsampling and resampling.

2.2 Speech Separation

Speech Separation is a subset of audio source separation that can be used for
the implementation of a technique to eliminate background noise from natural
speech. [2] most recently presented a review work that offers a thorough summary
of how deep learning might improve supervised speech separation approaches
and procedures. Their study describes the development and innovations in deep
learning for speech separation, emphasizing improvements in acoustic modelling
approaches and algorithmic tactics through 2018. However, after the publication
of this overview report in 2018, significant advancements have been made in the
literature. [19] proposed the SepFormer architecture, which provides state-of-the-
art speech separation performance, but, its size prevents it from being deployed on
an edge device. Similarly [20] describe a RE-SepFormer design that reduces com-
putational costs but maintains substantially but not enough for implementation
on edge devices. The MossFormer2 architecture presented by [21] shows promise
for network size and cost with its hybrid model, but, the implementation details
on their architecture lack explicit details on the computational requirements
during the forward pass, which is crucial for edge device implementation. For
deep neural network archetypes used in noise cancellation, the designs presented
by [13] and [4] offer the best performance. Nevertheless, in real-world scenarios,
these implementations are too slow for a less capable edge device to use. Two re-
search studies that provide models that meet our time limitations for edge device
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functioning were found through a more thorough analysis of pertinent literature.
We found that both the convolutional architecture explored in the Conv-TasNET
architecture, detailed by[22], and the Skip Memory LSTM model presented by
[23] with SKIM performed well. However, Conv-TasNET was superior in terms
of effectiveness for speech separation and audio enhancement and demonstrated
greater efficiency in the forward passage of the network.

2.3 Speech Enhancement

Deep learning approaches have once again changed the game in the speech en-
hancement space, producing breakthroughs in speech separation (AV-SS) and
audio-visual speech enhancement (AV-SE). A detailed review is given by [24],
which emphasizes the combination of audio signals and visual clues such as
lip movements. This multi-modal strategy has been successful in improving
voice quality by utilizing simple neural network designs such as feedforward
and recurrent neural networks. Specific training targets and objective functions,
fusion procedures, and auditory and visual elements are essential components of
these systems. [25] offers another thorough analysis that divides different speech
improvement methods into four categories: time domain, statistical-based, trans-
form domain, and AI-based. The survey by [25] addresses the need for effective
algorithms required for applications such as noise reduction and investigates
several approaches such as Wiener filtering, comb filtering, and deep learning
techniques. This survey highlights how speech augmentation is widely used in
a variety of industries, including automotive, medical, and telecommunication,
demonstrating the field’s increasing importance. Although not directly related to
speech enhancement, the study "Proximal Policy Optimization Algorithms" by
[26] offers insightful information about effective algorithmic frameworks surround-
ing the speech separation field and specifically presents PPO, a policy gradient
approach to reinforcement learning that emphasizes the significance of optimizing
objective functions and stability in performance for voice enhancement and pro-
vides a more straightforward and effective approach than earlier techniques used
within the field. [27] introduce SEGAN, the Speech Enhancement Generative
Adversarial Network, a generative adversarial framework operating on raw audio
waveforms. This end-to-end model effectively handles multiple noise types and
speaker variations, illustrating the potential of GANs in speech processing. The
“Phase-Aware Speech Enhancement with Deep Complex U-Net” architecture
presented by [28] addresses the difficulty of phase estimation in speech enhance-
ment through their introduction of Deep Complex U-Net (DCUnet). DCUnet
addressed a crucial issue that is sometimes overlooked in traditional models
by combining complex-valued operations with an innovative loss function to
maximize efficiency. [29] presents the “Deep Complex Convolution Recurrent
Network for Phase-Aware Speech Enhancement” (DCCRN) for specific use in the
context of real-time speech augmentation. The DCCRN model demonstrated the
efficiency and efficacy of phase-aware voice augmentation in real-time processing
scenarios by integrating recurrent structures and complex-valued convolution. A
convolutional neural network design is proposed by [30], with an emphasis on
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babbling noise that is frequently present in hearing aids. [30] demonstrates how
CNNs outperform conventional neural network models in speech enhancement
tests due to their efficiency in parameter usage. The creation of FullSubNet,
which combines full-band and sub-band models for real-time single-channel speech
enhancement, by [31] has made a substantial contribution to the area. Their novel
approach demonstrates how full-band and sub-band information complements
each other to improve voice quality by efficiently handling a variety of loud
environments and reverberation effects. Lastly, the ConvTasNet architecture from
[22] also introduced speech enhancement capabilities that operate directly in the
time domain. The ConvTasNet architecture is a lightweight and fast network
that outperforms conventional time-frequency magnitude masking techniques
and is perfect for real-time applications due to its efficient architecture and usage
of Temporal Convolutional Networks (TCNs), which enable accurate speech
separation with smaller model sizes and lower latency.

2.4 Available Datasets

The ongoing research within the domain of audio separation, speech separation
and speech enhancement is significantly influenced by the availability of diverse
datasets. [32] developed a foundational dataset based on the Wall Street Jour-
nal corpus (WSJ0), applying a ’Deep Clustering’ method for acoustic source
separation that maps spectrogram features into an embedding space. The Deep
Clustering method shows that the model can generalize beyond its training data,
and is especially good at managing combinations of multiple speakers. By adding
ambient noise recordings from actual situations to the wsj0-2mix dataset, the
WHAM! dataset by [33] improves realism and tests speech separation algorithms
in more challenging, noisy settings. Adding to this, the WHAMR! dataset from
[34] presents a more challenging scenario of speech recorded in noisy and rever-
berant environments by introducing synthetic reverberation. The AISHELL-4
dataset by [35] offers extensive Mandarin speech data, recorded in conference
settings with an 8-channel circular microphone array. Based on LibriSpeech,
LibriMix by [36] includes speech data mixtures from one, two, and three speakers
that were recorded at 8 kHz and 16 kHz. It emphasizes perceptually balanced
mixtures and natural conversation dynamics, and allows users to mix in WHAM!
noise. Scalable noisy speech data is made available by Microsoft’s MS-SNSD
dataset [37], which makes training and testing deep learning models for speech
augmentation easier. The ICASSP 2023 Deep Noise Suppression Challenge [38]
featured the most recent version of a Microsoft dataset for speech separation
and enhancement, highlighting the field’s progress by emphasizing deep speech
enhancement models for denoising, dereverberation, and interference suppression
in complex audio environments.
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3 Methodology

3.1 Architecture Design

The Conv-TasNET framework [22] was utilised to determine the effect of the
dataset sampling rate on model performance. This choice is driven by Conv-
TasNET’s proven efficiency in speech separation and speech enhancement, making
it ideal for processing within the limited computational capacities typical of
mobile devices. In addition, a CNN-driven model is optimal for data that forward
progressed in a single parse as a large matrix, where the location of the data to
other nearby data is meaningful. Conv-TasNET is also suitable for us because of
the minimal complexity of the model, allowing for optimal use on mobile devices.

Hyperparameters used for training the network
8kHz 16kHz 48kHz

Data
num sources 1 1 1
sample rate 8000 16000 48000
segment 3 3 3
Training
batch size 24 12 1
epochs 100 50 50
num workers 4 4 4

Table 1: Hyperparameters used for training the network across different sample
rates. Note that parameters that remained constant across each model are not
shown.

3.2 Dataset and hyper-parameters

The network was trained using three distinct datasets, sampled at 8kHz, 16kHz
and 48kHz, to determine the effect that the sampling rate has on the produced
audio quality. The network was trained through a high-performance computing
cluster utilising a parallel computing environment that contained 4x RTX-A6000
GPUs with 16 CPUs and 128GB of RAM. The model was adapted to enhance
single-channel audio and produce only speech audio from noisy audio. The
network hyper-parameters used for training are shown in table 1. As the network
size and complexity increased substantially with an increased sampling rate,
the batch size and number of epochs trained varied across the three sampling
rates utilised due to computational limits. All other network training variables
were standardized across all experimental trials to ensure uniformity in testing
conditions and maintain the integrity of the comparative analysis.
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Librimix with WHAM! (8kHz and 16kHz sampling rate) To establish
a baseline, we trained the architecture on two datasets made from LibriMix
speech audio library [36] with noise mixed in from the WHAM! dataset [33]. The
mixture generated from Librimix utilised focused on an 8kHz or 16kHz sampling
rate blend with 2-speaker audio for speech separation. A 360-hour dataset of
noisy speech audio for the 8kHz sampling rate and a 100-hour dataset of noisy
speech audio for the 16kHz sampling rate were hence produced and utilised for
the training of the model to gather a baseline. A training, evaluation, and testing
split of 80:10:10 was utilised for both the 8kHz and 16kHz sampling rates.

MS-DNS Challenge (48kHz sampling rate) The model was further trained
using a novel 48kHz sampling rate mixture from the ICASSP 2023 challenge
dataset presented by [38]. A 150-hour dataset of noisy speech audio for the
48kHz sampling rate was hence produced and an 80:10:10 training, evaluation,
and testing split was utilised for model training and evaluation. The Track
2-Speakerphone dataset from the challenge was selected for the model training.

3.3 Metrics for Evaluation

For model efficiency, we analyse the time and computational complexity of the
forward progression of the model. Model effectiveness was measured against
four metrics including the Scale-Invariant Signal Distortion Ratio (SI-SDR),
Short-Time Objective Intelligibility (STOI), Total Harmonic Distortion (THD)
and Quality Prediction For Generative Neural Speech Codecs (WARP-Q). The
SI-SDR and STOI are standard metrics used for the field of speech separation
and are calculated in alignment with the methods produced by the asteroid team
[39]. THD is a standard method for measuring audio quality within the domain of
signal processing and methods for calculation align with methods shown by [40].
A hamming window was first used to extract the frequency domain signal from
the audio-separated signal. Fundamental and harmonic frequencies were isolated,
and THD was calculated as the ratio of the root mean square of the harmonic
frequencies to the fundamental frequency, presented as a percentage. Lastly, the
Warp-Q metric computes the distance between reference and degraded signals
using dynamic time warping on spectral features as explained by [41]. Both the
THD and WARP-Q were then normalised against the original, noiseless audio
sampled at 48kHz. The THD normalisation score was taken as the distortion
present before processing minus the distortion present after processing:

THDnorm = signalcomputed − signalref

The normalization score was calculated as the inverse of the absolute difference
plus one, where closeness to the reference signal yields a higher score:

WARP-Qnorm =
1

|signalcomputed − signalref|+ 1
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4 Results

4.1 Model Demonstration

The noisy audio clip is sampled at 48kHz and was hence downsampled to be run
through the 8kHz and 16kHz models before being again upsampled to 48kHz
post-processing. Due to the downsampling and upsampling that was conducted
with the 8khz and 16kHz models, these two models produce an overall grainier
audio quality.1.

Model Effectiveness Results
8kHz 16kHz 48kHz

SI-SDR 14.70dB 14.74 dB 14.92 dB
STOI 92.60% 93.11% 86.36%
THD 41.09% 24.59% 2.21%
WARP-Q 38.40% 58.38% 77.94%

Table 2: Effectiveness results of the ConvTasNet model trained on similar datasets
across different sample rates of 8kHz, 16kHz and 48kHz. The forward progression
of the model was conducted on a single Intel core-i7 CPU

4.2 Effectiveness of model:

Results for SI-SDR, STOI, THD and WARP-Q are all shown in table 2. Figure 1
and Figure 2 show the frequency spectrum and harmonics of the de-noised audio
clips produced by the 8kHz, 16kHz, 48kHz and the original speech reference
signal. The 8khz and 16kHz were upsampled to a sampling rate of 48kHz utilising
a Polynomial Interpolation upsampling function before analysis.

4.3 Efficiency of model:

Table 3 shows the forward processing of the model to produce a de-noised clip
from noisy audio. The table shows forward inferencing for the 8kHz, 16kHz and
48kHz models conducted on a single Intel core i7 CPU for 1s, 5s and 10s noisy
audio clips.

5 Discussion

5.1 Effectiveness of model

The SI-SDR assesses the ratio between the signal (in our case the separated
speech) to distortion (in our case added noise) while being scale-invariant, thus
1 Audio samples produced by the model can be found on the project’s GitHub page:

ClearComm-NN

https://github.com/Brandonio-c/ClearComm-NN
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8 kHz Sampling rate 16 kHz Sampling rate

48 kHz Sampling rate 48 kHz Reference signal spectrum

Fig. 1: The noisy one-minute audio clip shown above was taken and passed
through the models trained on 8kHz, 16kHz and 48kHz. The frequency spectrum
of the noise-filtered audio files is shown above as well as the original, noiseless
audio files.

independent of signal loudness or scale and the STOI predicts speech intelligibility,
evaluating how understandable the speech is to a typical listener making the
SI-SDR and STOI good metrics to determine whether the model can effectively
produce the desired speech audio whilst filtering out the background noise. The
THD measures the degree to which a system distorts the harmonic components
of the signal compared to its fundamental frequency, and the WARP-Q assesses
the perceptual quality of the generated speech, taking into account factors like
naturalness and clarity. Together, these metrics ensure that not only is the speech
intelligible and clear of noise (as measured by SI-SDR and STOI), but it also
retains fidelity to the original sound without introducing unintended harmonic
distortions ( as measured by the THD and WARP-Q). The SI-SDR values, as
shown in Table 2, indicate a consistent performance across 8 kHz and 16 kHz
sample rates, with a slight increase at 48 kHz (14.70 dB, 14.74 dB, and 14.92
dB, respectively). Whilst there as not a notable increase in SI-SDR, it should
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8 kHz Harmonics 16 kHz Harmonics

48 kHz Harmonics 48 kHz Original Harmonics

Fig. 2: Harmonic content comparison across different sampling rates and the
original signal for audio quality assessment

also be noted here that the higher sampling rate datasets were trained over half
of the epochs due to computational complexity. In contrast, the STOI results,
which range from 92.60% at 8 kHz to 86.36% at 48 kHz, imply a slight decline
in how well typical listeners might understand the speech as the sample rate
increases. The decline in performance for the 48kHz model for STOI is likely
due to the lowered amount of training conducted (i.e. lower epoch size) and the
reduction in batch size due to computational constraints during model training.
However, there is a drastic improvement in THD from 41.09% at 8 kHz to 2.21%
at 48 kHz suggesting that the model increasingly preserves the harmonic integrity
of the audio signal as the sample rate increases. Lower THD at higher sample
rates indicates less harmonic distortion, which is critical for audio quality in
high-fidelity applications. Similarly, the WARP-Q results also show a progressive
improvement (38.40% at 8 kHz to 77.94% at 48 kHz), underscoring a better
perceptual audio quality at higher sample rates. This suggests that the model
not only improves in handling the nuances of audio signals but also enhances the
naturalness and clarity, making the output more pleasing and accurate to the
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Model Efficiency Results
8kHz 16kHz 48kHz

10s clip 118 ms 238 ms 724ms
5s clip 63 ms 121 ms 754 ms
1s clip 18 ms 34 ms 102 ms

Table 3: Efficiency results of the ConvTasNet model trained on similar datasets
across different sample rates of 8kHz, 16kHz and 48kHz. The forward progression
of the model was conducted on a single Intel core-i7 CPU

human ear. The frequency spectrum and harmonic content further substantiate
these findings. As illustrated in Figure 1, the audio clip denoised at 48 kHz more
closely mirrors the reference signal’s frequency spectrum, indicating superior noise
filtering capabilities. This alignment suggests that the model, when operated
at 48 kHz, more effectively suppresses noise while preserving essential speech
characteristics. Similarly, Figure 2 reveals that the fundamental frequencies and
harmonics of the 48 kHz output are significantly closer to the reference, an
average 1dB difference, compared to the outputs at 8 kHz and 16 kHz which
ranged from a 20dB to 30dB difference from the reference speech signal. This
closer resemblance in harmonic structure from the audio produced by the model
trained on higher sample rates corroborates the model’s capacity to maintain
audio integrity, echoing the findings from THD and WARP-Q metrics.

5.2 Efficiency of model

[22] report a forward inference time of 0.4ms for a single frame when the Con-
vTasNet architecture is deployed on one core-i7 Intel CPU, where a frame is given
as the frame size divided by the sampling rate, i.e. for a sample chunking size
of 256 samples per frame, one frame sampled at 8kHz would equate to 32ms of
audio and is processed at 0.4ms. The forward processing time is hence given by:

Processing time =
N

n
× 0.4ms (1)

Where N is the number of samples per frame and n is the sampling rate selected.
Theoretically, using 256 samples per frame, this then equates to roughly 12.5ms
to process 1s of audio at 8kHz, 25ms at 16kHz and 75ms at 48kHz. As shown in
table 3, per every second of audio chunk processed, the 8kHz model has a forward
progression time of roughly 18ms, the 16kHz model 34ms and the 48kHz model
102ms. The minimal difference in measure and theoretical results is likely due to
environmental factors. As observed, doubling the model size from 8kHz to 16 kHz
adds only 16ms forward processing time due to manageable data growth, but
the sixfold increase to 48 kHz from 8kHz exponentially intensifies computation
and memory usage, causing a 5x slowdown, as the model’s architecture and
complexity struggle to handle such data volume. The “average audio leading
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threshold for a/v sync detection is 185.19 ms” [42] and as such, the present
model is likely efficient enough to function in real-time running on a mobile
device on a single CPU given the mobile phone processor is at least a quad-core.
Alternatively, to speed up the forward processing time, processing across multiple
CPUs or dedicated hardware such as a GPU/TPU could be achieved on some
mobile devices. For less computationally available hardware such as older devices,
a reduction to the layer size of the present model could also be implemented.
Additionally, training the model on exactly eh Nyquist rate would also increase
efficiency while maintaining effectiveness. However, Further testing should be
conducted on a range of mobile devices to test the above assumptions.

5.3 Model trade-off

There was an observed increase in the computation time required to separate
audio with the model trained utilising a 48kHz sampling rate. However, there
was also an observed reduction in audio quality produced by the models trained
at 8kHz and 16kHz attributed to the necessary processes of downsampling
and upsampling involved with lower sampling rates. Downsampling to 8kHz
inadequately captures the range of frequencies discernible by the human ear as
human hearing typically ranges from 20Hz to 20kHz, and to accurately reproduce
this range, a sampling rate of at least twice the maximum frequency (the Nyquist
rate) is required. As such, the industry standard for high-quality audio is set at
44.1kHz, which is sufficient to cover the audible spectrum with minimal loss of
fidelity. In addition, models trained on 16kHz data greatly hinder the model’s
effectiveness on standard 44.1kHz data that we want our model to denoise since
the implicit assumption of the time between each sample in the signal is changed
by passing a 44.1kHz signal through the model. The time between each sample
in the original sample in a 44.1 kHz signal is different from the 8kHz data that
the model is trained on. Hence, training our network to accommodate audio
sources at 44.1kHz would effectively mitigate the need for downsampling and
subsequent upsampling, thus preserving the integrity of the audio signal. This
approach aligns with industry standards and ensures that the processed audio
remains within the optimal range for human hearing. By implementing training
at this higher sampling rate, we show a significant improvement in the quality
of the separated audio, and align our model’s performance more closely with
real-world applications and user expectations.

6 Conclusion

We aimed to determine the effect that dataset sampling rate had on a lightweight,
highly effective Deep Neural Network that could conduct real-time noise can-
cellation for mobile voice communications in noisy environments. To achieve
this, we conducted a comparative study on the effect that the audio sampling
rate had on an existing model architecture for effectiveness and efficiency. Our
review of the literature indicated a significant body of work in the field of deep
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learning-based noise cancellation, with specific emphasis on innovations that have
transformed audio processing for a variety of applications in the deep learning
domain, especially in the area of speech separation. We chose the Conv-TasNET
network architecture as our foundation model to accomplish noise cancellation
on an edge device. To train the Conv-TasNet architecture, we chose the WHAM!,
LibriMix, and MS-2023 DNS challenge datasets for their accessibility and dataset
features which aligned with our goals. The model was hence trained on a mix of
these datasets utilising a sampling rate of 8kHz, 16kHz and 48kHz respectively.
Our findings indicate that increased model effectiveness to produce high-quality
separated audio from the noisy speech was achieved through training on data
with a higher sampling rate via an algorithm for speech enhancement. In addition,
the model showed robustness towards audio signals measured naturally despite
being trained on only generated audio signals. The 48kHz model is likely efficient
enough to achieve noise cancellation through audio source separation and en-
hancement on mobile phones, however, implementation of such a noise-enhancing
feature in real-time on edge devices needs to be created for accurate testing.
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